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Abstract

The solution of heat equation inside oscillating gas bubble with moving boundary was obtained by Fourier’s method. The integral
formula for interface heat flux, containing theta-function in the integrand was derived. The kernel of the integral is represented by a series
of exponential functions, and a simple analytic approximation obtained earlier is used for it with high accuracy. The asymptotic expres-
sion for the interface heat flux in the Duhamel integral form with rooted kernel was derived.

The vapor bubbles were also considered. In this case the major problem is external heat problem in liquid. It is shown that the asymp-
totic expression for the heat flux at the interface in the case of gas bubbles has the similar structure as the heat flux from the vapor bubble
surface to the liquid. In both cases it is Duhamel integral with rooted kernel.
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1. Introduction

Mass, force, and energy interactions proceeding at the
interfaces in gas-liquid flows result in substantial varia-
tions in the flow velocity, pressure, and temperature field.
To describe the processes of interface heat-exchange in
gas-liquid bubble flows correctly, one has to analyze the
interaction between a bubble and the carrier phase.

Oscillations of gas and vapor bubbles in liquid have
been analyzed, both theoretically and experimentally, in a
number of works which are discussed in detail in [1-3].
However, of both methodological and practical importance
is the derivation of simple analytical dependencies for inter-
face heat-exchange.

2. Formulation of the problem for the gas bubble

Let us consider the behavior of a gas bubble in a liquid.
The surrounding liquid is incompressible and ideal. The

* Tel.: +973 17437562; fax: +973 17449145,
E-mail address: nail@sci.uob.bh

0017-9310/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2007.06.012

processes occurring within a bubble are assumed to be
spherically symmetric. Phase transitions are ignored due
to the low temperature of the gas and the liquid.

The pressure inside the bubble is assumed to be uni-
form [4-6]. It takes place when the length of sound wave
in gas is much greater than the bubble radius. In the
absence of phase transitions the temperature of a liquid
remains practically unchanged, and the heat flux across
the interface, ¢, is fully defined by the thermal resistance
of a gas. Since no phase transitions take place, the heat
flux across the boundary is continuous. Hence, g may
be found by solving the internal heat-exchange problem
for a bubble [4-7]
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The temperature of the bubble surface stays practically
constant since the liquid has much higher thermal conduc-
tivity and much smaller thermal diffusivity than the gas
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Nomenclature

R bubble radius

R time derivative of the radius
r radial Euler coordinate

X longitudinal coordinate

t time

Jj the phase transition rate

/ the latent heat of evaporation
Pe = 2Ro(37polp.)"’ %a, Peclet number
temperature

dummy variable (nondimensional)
density

pressure

radial velocity

longitudinal velocity

thermal conductivity

thermal diffusivity

Q(\JQC’EENQ

B gas constant

Y specific heat ratio

C specific heat

C, specific heat of the gas at constant pressure
P=£C=¢,0= l ,T =% nondimensional parameters
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<

Ly u—@g,ro—xl/n =0.1548,x; = 1.526
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Subscripts

liquid

gas

vapor

at equilibrium

at the bubble surface
at the saturation
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The continuity equation for the gas, with using the
uniformity of the pressure and the boundary condition
v(0, t) = 0, yields the velocity profile in the bubble:
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3. Analytic solution

(2.3)

The problem was solved by using the variable ¢ = r/R(¢)
which “freezes” the moving boundary of the bubble. By
using formulas for the change of variables:
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The estimates show that deviation of velocity profile
inside the bubble from linear dependence due to the tem-
perature gradient (2.3) is usually not exceed 20%. For this
reason the convective term of heat Eq. (3.2) in new vari-
ables (£,f) can be neglected.

Let us consider the case when the deviation of bubble’s
radius from equilibrium position is small enough. Then Eq.
(3.2) can be simplified
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Let us use nondimensional variables
T t R}

= T = Sy (3.4)

Eq. (3.3) in nondimensional variables will have a form:
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(3.5)
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Let us use a new variable u = 0&. In new variables Eq.
(3.5) will have a form:
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Solving this nonhomogeneous equation by Fourier’s
method we will obtain the solution
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From temperature distribution (3.7) we can find heat
flux at the interface
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The kernel of integral (3.8) can be written as follows:

G(x) = Zi exp(—n’x) = y(x) — 1
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The function (x) can be expressed in terms of the
Jacobi theta-function. The following high accuracy
approximation for the function G(x) was obtained in [9]

G(X):{M—l70<x<xl

(3.10)
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It was obtained in [9] that x; = 1.526 and relative error
of approximation (3.10) amounts to 1%. In Fig. 1, the plot
of the exact values of the function G(x) is presented. One
can readily verify that the approximation (3.10) of the
function G(x) for x < x;, and x> x| practically coincide
with the exact curve given in Fig. 1.

Expression (3.8) taking (3.9) into account can be written
in the form:

G{x)
nN
[4.]
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Fig. 1. Plot of the exact values of G(x).
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Taking into account (3.10) we will obtain:
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Let us introduce Peclet number
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As it is shown in [9] for Pe < 1 (in the case of bubble
oscillations, close to isothermal) it is necessary to take into
account in (3.12) all three terms in the braces.

But in another asymptotic case Pe > 1 (for the oscilla-
tions of a bubble close to adiabatic) it can be shown that
the major term in (3.12) is the middle term.

Hence
y—1 2,T * d(lnP) dz
q(1) =
Y RO\/E T—Tg dz T—z (313)
T>10,Pe>1

4. Vapor bubbles

In the case of vapor bubble in hot liquid when the phase
transitions take place the major role plays the external heat
problem in liquid surrounding the bubble [4].

The boundary condition at the interface have a form

oT. oT,
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usually |gy| < [gel-

We assume that the vapor obeys the equation of state of
a perfect gas, and being in the saturated state at the inter-
face it obeys the Clapeyron—Clausius equation
d7y  Ts(p)
dpv - gpv » Py < 2

As the first approximation for ¢, (the heat flux from the
bubble surface to liquid), we can use solution [10].

This solution assumes that the bubble boundary is not
moving and boundary conditions are nonsteady.

(4.2)
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First term in (4.3) express the contribution to the heat
flux of the sudden (jump) change of boundary condition.
The second term is due the sphericity. The third term
depends of all past history of the process. For the processes
with sufficiently large bubbles (R ~ 1 mm) with moderate
change of pressure (p(f)/po < 10) the second term is small.
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Fig. 2. Integrands in Duhamel integral for the behavior of vapor bubble
in steady shock waves with oscillatory (a) and monotonic structure (b).

The first term is zero in the cases when temperature at
the interface is changing continuously starting from 7.

For this reason in large class of the problems we can
write [11].

e "dTs(r) dz
= 44
0= [ (44)
After using (4.2) we will obtain
Ae T
T, dp, dr (4.5)

qe:‘/ﬂae o fp, dT Vi—1

In Fig. 2 nondimensional integrands in Duhamel inte-
gral are presented

1 dTs *dz
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The cases a and b in Fig. 2 correspond to the behavior of
vapor bubble in stationary shock waves with oscillatory (a)
and monotonic structure (b) [11]. In Fig. 2b the curves are
presented for different moments of time that corresponds
to different distances. The dashed lines show the position
of the shock wave.

The comparison of formulas (3.13) and (4.5) shows that
in both cases (gas and vapor bubbles), the heat fluxes have
the similar structure (Duhamel integral with rooted kernel).

5. Conclusion

The solution of heat equation inside oscillating gas bub-
ble with moving boundary was obtained by Fourier’s
method. The formula for interface heat flux containing
Jacobi theta-function was derived. The kernel of the inte-
gral is represented by a series of exponential functions. A
simple approximation with high accuracy for theta-
function obtained earlier, is used for obtaining the
expression for the interface heat flux. The asymptotic
formula for the heat flux is Duhamel integral with rooted
kernel.

In the case of vapor bubbles with phase transition the
major role plays external heat problem in liquid. It is
shown that the asymptotic expression for the heat flux at
the interface for gas bubbles has the similar structure as
the heat flux from the vapor bubble surface to the liquid.
In both cases it is Duhamel integral with rooted kernel.
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